

SYTECHS MINING TECHNOLOGY

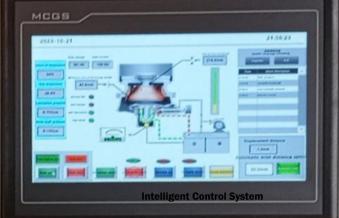
SYTECHS ST-SS-H/S HYDRO CONE CRUSHERS

NORTH AMERICAN TECHNOLOGY

2 YEARS EXTENDED WARRANTY

www.sytechs-minerals.com

SS-H/S SERIES CONE CRUSHERS


The Sytechs **SS-H/S** Series Hydro Cone crushers are suitable for a high-capacity Secondary, Tertiary and Quaternary applications. The SS-H/S series are of Single Shaft design that is hydraulically adjustable for proper selection of the crushing chamber. The Hydro crones can match any changes in production requirements through the selection of crushing chambers and an eccentric throw while the crusher is in working condition and by a press of bottom.. This flexibility means that it's suitable for a wide range of applications.

Features:

- High Performance & Efficiency
- Constant Feed acceptance Capability
- High output
- High quality product

Full Control of the Process

- Intelligent Control System
- Safety & Setting Adjustment Functions
- Heavy Duty Hydraulic Cylinder, supporting and adjusting
- the Main Shaft
- Automatic Overload Protection

INTELIGENT CONTROL SYSTEM

- A variety of standard crushing chamber types to be chosen, which can fully meet various production requirements
- Automatic Control System Continuous monitoring of the internal load of the crusher and automatically adjust the equipment to get the best performance.
- Guaranteed performance when original Sytechs parts are used, a long lifetime of the cone crusher is guaranteed.

Easy Handling & Maintenance

- All Servicing & Handling of the cone is done from the upper side.
- Robust & Effective Sealing against Dust

Excellent Versatility

- Easy setting adjustment to match the desired output size
- Excellent choice for Secondary, Tertiary applications.

Customers Satisfaction

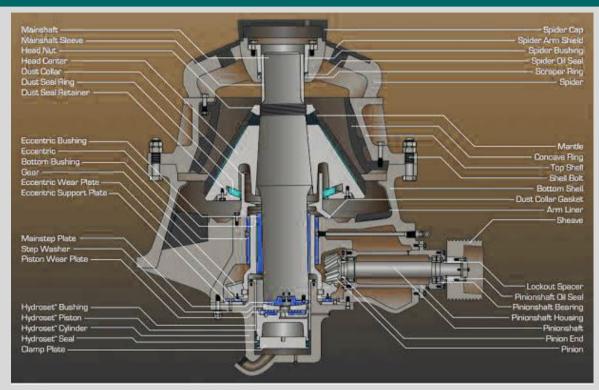
- Vast Experience around the Globe
- High Efficient worldwide service & Distribution network
- Efficient, Cost Effective repair and rebuilding services.

Soft Start Drive (SSD) System

The SS-H Series Cone crushers are supplied with Soft Start Drives (SSD) System which are used to limit inrush current associated with electric motor startup. Soft-start drives lower the initial voltage by adding solid-state series impedance and ramp up until full speed is achieved. Doing this extends the life of the motor and mechanical components that are connected to it. The SSD also eliminates high inrush current on large electric motors which places a high demand (Power Surge) on the electrical supply system and often results in extra cost and larger power generators.

Guaranteed performance when original Symonstechnology (Sytechs) parts are used, a long lifetime of the cone crusher is guaranteed

Wearing parts are available with High Manganese MN13%, Mn18%, Mn21%

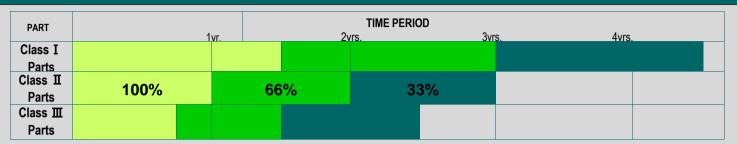


	83						3 604			02															Ι					Γ						906-1331	876-1286	821-1206	865-1098			912-2128	7-1613	1094-1231	CIII]
	76						562-983			_		_		_	_				_		_						_	_		_		_		_	_		_					-		_		_			_
	20						525-1050	504-931		64																										849-1512	820-1461	769-1370	810-1248			854-1994	962-1924	1025-1538	1040-1-0501				
	64						489-978	469-922		57																										782-1393	756-1464	708-1373	746-1372			787-1837	886-1773	945-1771	902-1004 958-1245				
:	09						465-929	446-892		51																			308 E11	323-359	317-353					725-1291	700-1357	657-1272	692-1271	707		730-1702	821-1643	876-1642	888-1200 888-1420			790	
;	54		214		365-456		428-856	411-823		44													192-384	183-229				-	708 AR7	293-521	288-512	273-364				658-1172	636-1232	596-1155	628-1154	638-749	551_660	662-1546	746-1492	795-1490	806-1370			718-883	
SS mm	51		205-256		349-524	333	317 410-718	394-788	SS mm	38						111 000	119-200						175-395	167-335	161-242	194			270 BNE	278-654	263-643	249-499	302-403	318-363	670	601-1070	581-1125	544-1055	5/3-1054	582-942 EDD 0E7	503-728	605-1411	681-1362	726-1361	736-1251	816-885	665-721	655-882	-
Nominal Capacity in TPH with Crusher running at CSS mm	48		196-306	180 165	334-601	318-398	303-378 392-588	376-753	Nominal Capacity in TPH with Crusher running at CSS mm	32	76-128	70-132			5 5mm	-0.01111	98-197	93-145	104			-5.6mm	159-357	151-378	146-328	1/0-281	156 200	6-7 5mm	246.547	242-592	238-582	226-562	274-502	28/-451	104-767	544-968	525-1018	492-954	519-953	521-928	000-91Z	547-1277	616-1232	657-1231	666-1132	739-985	602-803	593-798 534-575	> 10 L00
with Crusher	4		183-344	169-264 154-291	313-563	298-448	284-426 368-460	353-618	with Crusher	25	66-112	61-118			20_40 with 80% Einer than 4_5 5mm		91-102 86-173	82-184	91-154	92	17	70-90 with 80% Finer than 5-5.6mm	139-313	133-332	128-320	154-339	127 261	– 4	216 A64	212-519	209-510	198-484	240-500	252-450	004-007	477-849	461-893	432-837	455-836	462-814	4/0-000	+	_	-	584-993	648-945	528-770	520-700 468-630	
acity in TPH	41		174-327	161-301 147-275	298-446	284-511	270-486 349	336-420	acity in TPH	22	62-105	57-110			AD_AD with BD0		81-162	77-173	86-162	87-114	72-95	70-90 with 80%	131-294	125-312	120-301	140-318	-	23-230 00-125 with 80	203 436	200-488	-	186-456	226-470	231-423	261-290	448-588	433-636	406-723	428-786	-	2C1-244	-			549-933	-	496-724	489-658 440-592	100.04
Nominal Cap	38	121	165-310	152-285 139-261	282-353	269-484	256-461	318	Nominal Cap	19	_	54-103	8-59		-	_	76-152 S	-	-	81-126 8	-		_			130-298		-	100 238 7	÷		_	_	222-396 2	-		406 4		+	-	4 14-7 U4 4 4 4 352-508 3	-			514 5		_	458-616 4 412-554 4	
	35	114-143	156-293	144-270 131-246	267	254-381	242-435		_	16	_	-	45-76 48	53	- +0	-	71-142 V0 V0	-	ŀ	76-124 81	-		_	_	+	120-2/8 130		-	177 101	4		-	-	201-369 222	-		4	38(+	3/9-424 40	-	-				531 570	-	-	┨
	32	107-168 96	147-230	135-254 124-232		239-299	228-342			-	_	_		-	-	-	-	-	-		-		_		+	-	_	-	ţ	174	171	162	_	-	-	-			010	-	-	-		_		22	-	-	┨
-	29	101-158 90-112	138-173	127-199 116-218	-	-	214-267			13	50-85	46-89	41-80	44-68 35.48	+-CC	00 00	66-131	62-140	H	70-115	-			101	97-122	191-111	104 104	-		_		_		192	211-293					0 2 2 0	30/-533	+		_	_		_	395-532	-
	-	92-115 1 82-128 8		116-145 1 106-166 1		+	195 2			9	46	43-53	38-74	40-71 32 57	10-70			57	64-84	65-106	54-88						06 176	0/1-02							_						280-405							364-420 328-441	
	22	10		127-199 11 98-123 10	-		_	_		∞			36-44	38-67						61	LC)						00 135	CC1-02																				309-356	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
	19	70 76					-	_		9	_	_		36 20 50		_					48-78				+			-	-	ł		_	_		ł		_		+			╞		+		_	_	_	
		2		91					ed	m) 4		_		07.34	-		_		-		_							-	+	-		_			-		_					╞			_				
Max Feed	aize (m	240 200	360	300 235	450	400	300	200	Max Feed	Size (mm)	135	66	65	38 20	8 8	101	145	115	06	75	50	35	215	175	140	110	02	2 %	775	245	215	175	135	115	65	300	240	195	155	001	00	370	330	260	130	120	100	55 7.5	2
Chamber	Iypes	പ്റ	З	υŊ	E	с	M C) ပ	Chamber	Type	EC	c	M	MF	- 8		2 C	MC	MC	MF	ш	EF	ы	ပ	MC	D L	MF	- #		3 23	č	MC	Σ	۲ ۲	- 11	EC	ပ	MC	MC	ΨL	ᄔ	5 1 1 1 1	ပ	WC	MF	<u> </u>	EFX	11 11	ŀ
Power	2	06		132	000	77	315	2	Power	Kw			06	8					132						000	770						315							520						600				1
MODEL		SS420S SS430S SS430S		SS430S	007700	004400	SCREDS			MUDEL		S420H		SS420H					SS430H						10110	5544UH						READER							SS870H						SS880H				

CRUSHING CHAMBER

EEF- Extra Extra Fine EF- Extra Fine EFX-Extra Fine Extra F-Fine MF-Medium Fine M-Medium MC-Medium Coarse C-Coarse CX-Coarse Extra EC-Extra Coarse

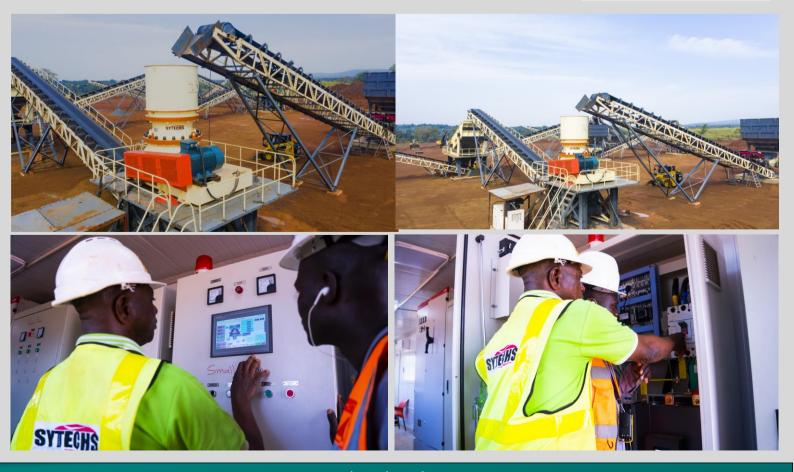
Skid mounted Unit. The cone crusher along with the driving electric motor are both mounted on a skid structure to reduce vibration and belt hammering. This results in better driving performance and longer motor bearing/counter shaft bushing life.



www.sytechs-minerals.com

CLASS I

Adjustment Cap Adjustment Ring Bowl Bowl Adapter Ring Clamp Ring Countershaft Counter shaft Box Eccentric Extension Cap Feed Distributor Head Head Center Head Nut Locking Collar Lower Spring Segment Main Frame Main Shaft Main Shaft Nut Shaft Extension Shell Socket Spider Spider Cap Springs Tie Rod Tie Rod Nut Upper Spring Segment


CLASS II

Bowl Lock Counterweight Gear Gear Housing Lower Step Bearing Plate Lower Thrust Bearing Main Frame Cap Main Frame Pin Oil Flinger Oil Flinger Housing Pinion Upper Step Bearing Plate Upper Thrust Bearing

CLASS III

Anti-Spin Mechanism Arm Guard Bottom Sleeve Bowl Adjustment Ram Clamping Cylinder Countershaft Bushing Dust Collar Eccentric Bushing Eccentric Thrust Bearing Eccentric Thrust Bearing Eccentric Thrust Washer Feed Cone Feed Hopper Feed Plate Floating Ring Floating Ring Floating Ring Retainer Gearbox Guard Head Wiper Ring Lower Hydraulic Cylinder Hydraulic Cylinder

Locking Nut Locking Nut Cover Lock Link Main Frame Liner Main Shaft Sleeve Motorized Rotating Feed Distributor Oil Collar Gear Outer Eccentric Bushing **Power Unit** Sealing Ring Socket Liner Socket Plate Socket Plate Socket Sealing Ring Spider Bushing Spider Guard Spider Wing Guard Spider Wing Guard Spring Bolt Swivel Plate Thrust Plate Top Sleeve Seals Guide Bushing Head Wiper Ring

FACTORY

Crusher Capacities

The capacity figures shown apply to material weighing 100 pounds per cubic foot or 1600 kg per cubic meter. The crusher is one component of the circuit. As such, its performance is in part dependent on the proper selection and operation of feeders, conveyors, screens, supporting structure, electric motors, drive component and surge bins. Where used, attention to the following factors will enhance crusher capacity and performance.

- Proper selection of crushing chamber for material to be crushed.
- A feed grading containing proper distribution of the particle sizes.
- Controlled feed rate.
- Proper conveyor sized to carry maximum crusher capacity. 1
- \checkmark Discharge conveyor sized to carry maximum crusher capacity.
- Properly sized scalping and closed circuit screens. Automation controls.
- - Adequate crusher discharge area.

The following factors will detract from crusher capacity and performance.

- Sticky material in crusher feed. 1
- Fines material in crusher feed (smaller than crusher setting) 1 exceeding 10% of crusher capacity.
- Excessive feed moisture.
- Feed segregation in crushing cavity.
- Improper feed distribution around circumference of crushing cavity. Lack of feed control.
- 1
- Inefficient use of recommended connected horsepower. 8 Insufficient conveyor capacity.
- Insufficient scalper and closed circuit screen capacities. 10 Insufficient crusher discharge area.
- Extremely hard or tough material.
- Operation of crusher at less than recommended full load countershaft speed.

For more complete information on Sytechs)products, dealer services, and industry solutions, please contact sales@sytechs-minerals.com © 2020 Sytechs Minerals All Rights Reserved

For more complete information on Sytechs products, dealer services, and industry solutions, visit us on the web at www.sytechs-minerals.com © 2021 Sytechs Minerals All Rights Reserved

ISO 9001 OUALITY SYSTEM

Manufactured as per North American Design and Specifications, **Under License of Sytechs Minerals**

Form: SCC47-23-2-11

www.sytechs-minerals.com